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NATURAL VIBRATIONAL FREQUENCIES OF A GAS OUTSIDE A CIRCULAR 

CYLINDRICAL SURFACE 

V. B. Kurzin and S. V. Sukhinin UDC 534.2:532 

One of the little-studied problems in the theory of wave processes is that of natural 
vlbra~ions in open regions, i.e., regions having infinitely distant points. Examples in the 
literature of the solution of appropriate problems are not precisely formulated. Among these, 
e.g., is the theory of resonators developed in the last century by Helmholtz and Raylelgh, 
and the theory of an open tube in acoustics [I]. Under the assumption that the process of 
natural vibrations in a resonator is steady, these authors estimated the effect of an opening 
on the frequency of vibrations, and determined the approximate degree of their damping as a 
consequence of the radiation of energy into the external space. They did not study the 
character of the vibrations of a gas far from resonance. We now assume that the vibrations 
of a gas can be considered steady over the whole region, clear up to infinitely distant 
poln~s. Then, introducing the time dependence by t~e factor 

exp(--ik-~) (k = k" + ik~, k" = ko + Ak, k~ < O) 

(where a is the speed of sound; ~, a characteristic dimension of the resonator; ko, reduced 
frequency of natural vibrations of the gas in the resonator with the opening closed; Ak, cor- 
rection of the frequency introduced by the opening; and k", a quantity characterizing the 
damping of the vibrations), we change over from the wave equation to the Helmholtz equation 
for the whole region occupied by the gas. In the absence of waves from infinity, the solu- 
tion of this equation for k" < 0 will increase exponentially at an infinite distance from the 
resonator. It obviously does not satisfy the Sommerfeld radiation conditions, and is at 
variance with the usual formulation of external boundary-value problems for the Helmholtz 
equation. Actually, of course, such a result is not realized, since the damping of free 
vibrations cannot continue infinitely long. However, the Helmholtz equation is a convenient 
model for describing ~ibrations of a continuous medium, and therefore a question arises of 
the rigorous mathematical formulation of the radiation condition for complex values of the 
wave number k with k" < 0. It was formulated for the first time for the two-dimensional case 
[2], and generalized later to the three-dimenslonal case in [3]. It should be noted that 
questions related to natural vibrations in open regions arise in scattering theory. Thus, 
in [4] the asymptotic solution of the scattering problem outside the obstacle is written as 
a series in the eigenfunctlons of corresponding boundary-value problems for the Helmholtz 
equation. In this case it was shown rigorously that the eigenfunctions satisfying the out- 
going radiation condition increase exponentially at large distances from the obstacle~ and 
the corresponding elgenvalues are complex and lle in the lower halfplane. It was shown in 
the three-dlmensional case that the eigenvalues of the external problem for finite obstacles 
are discrete. Certain qualitative results concerning external elgenvalues were obtained by 
Arsen'ev [5, 6] who invesuigated the resonance properties of the solution of the scattering 
problem for a domain of the type of a cavity resonator. Arsen'ev showed that for a suf- 
ficiently small opening of the resonator, the poles of the solution sought are loca~ed in the 
neighborhood of the eigenvalues of the external and internal boundary-value problems for the 
respective regions without openings. In the present article we investigate the precisely 
formulated problem of the dependence of the complex eigenvalues of the Helmholtz equation 
on the size of the opening of a resonator in the form of an infinite cylinder with a longi- 
tudinal slot. 
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i. We consider natural vibrations of an ideal gas in the plane of a cross section of an 
infinitely long circular cyllndrical surface (Fig. 1). The corresponding mathematical problem 
reduces to that of finding the function ~(x, y) which determines the amplitude of the velocity 
potential in the plane outside the contour L. 

It must satisfy the Helmholtz equation 

q ~  -t- ~yy § k">q~ = O, (1 .1 )  

where x and y are dimensionless coordinates relatlve to the radius of the cylinder, the 
boundary condition 

v q ) - v = O ,  ( x , y ) ~ L ,  ( 1 . 2 )  

where ~ is a unit vector normal to L, and the radiation condition, which, according to [2], 
will have the form 

qJ= ~ asH~ 1)(kr)e ~~ for r > t ,  ( 1 . 3 )  
$~--oo 

where " (~) ~s (kr) is a Hankel function of the first kind, and r, 0 are the cylindrical coordi- 
nates of points in the plane under consideration. 

Because of the symmetry of the region, we assume that the solution of the problem is 
symmetric with respect to the y axis; i.e., we assume that 

r  O) = q~(r, - - 0  ). ( 1 . 4 )  

2. We seek the solutlon of the problem by Joining the external and internal solutions. 
To this end, we take account of (1.4) and represent ~ in domain Do (r < 1) in the form 

~ = ~ b~Y~ (kr) cos (sO) ( 2 . 1 )  

(where the Js(kr) are Bessel functions); taking account of (1.3) and (1.4), we write ~ in 
domain D (r > i) in the form 

= ~ asH~ 1) (kr) cos (sO). ( 2 . 2 )  

We expand the derivative of the required function along the normal to the arc AB (r = I, 

l el < 6) in the series 

I ___ 2 ~ r  r ~ l  

Then, by satisfying ( 1 . 2 )  and (2.3), we obtain on the boundary of domains D and Do, respec- 
t ively, 

(t'  (k~) l,.=O-" ~ g~,,.'~,,.; (2 .4)  bo = ~-  '~ Co (.So' (k,.) I,'=,)- ,' b.~ = ~ ,_,.< 
n = o  

2~ ( H(1)' a o = ~  -c~ (H(o 1)' (kr)It=l) -:l-, as = ~-,, s~ (kr) I t = l ) - 1  gsncn, 

(--  1) n s sin s S = s~, n = g n .  
g~n = s 2 _ n~ , 

(2.5)  
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To join the solutions in domains Do and D along the arc AB, we use the fact that their 
normal derivatives are equal, as ensured by Eqs. (2.4) and (2.5), and require the equality 
of the functions represented by Eqs. (2.1), (2.2) on this arc. As a result, we obtain the 
relation 

h~os(~O) E g~c~ =o ,  (2.6) 

where 

/]0 H~ 1) h /~ U~')h 
o , , = ~  t4 4"'7,=~ 

for s # 0, in which the only unknowns are the coefficients c n in series (2.3). 

Expanding the left-hand side of Eq. (2.6) in a Fourier series in cos (vm0/6) and equating 
each term of the series to zero, we obtain an infinite system of homogeneous algebraic equa- 
tions 

~amnCn : 0 (m = 0, t, 2 . . . .  ), (2.7) 

where 

amn:~gmsgsnhs(gms ( -  l)ms sins ) 
= V - g 2  , r e = m R  . 

Thus, the problem posed has been reduced to that of finding the nontrlvial solution of 
the infinite system of homogeneous algebraic equations (2.7). The complex values of the 
parameter k for which this solution exists will determine the natural frequencies and the 
damping factors of the vibrations of the gas in the region considered. 

3. We shall show that this problem can be solved by the reduction method, and that each 
of its eigenvalues is the limit of the eigenvalues of the corresponding truncated system. 

To do this we write Eq. (2.6) in the form 

6 

hoCo + E ho cos (~o} J'~ (~) co~ (~} d~ = 0. (3. l )  
s=l 0 

Using the series representations of the cylindrical functions, we obtain the asymptotic 
expressions for the functions for s >> Ikl 

]~ (k) 

n ~ ) . ( k ) = - -  7 l +  2 \ , l j + o -~ . 

Hence we have 

(3.2) 

Using (3.2), we write the function h s in the form 

and substitute this expression into (3.1). Then we obtain 

co 6 co - 

~=1 ; 7 "~ (~) du + 6 ~=1 cos (s0),,=o g.~c~ 

Using the well-known expression 

~ cos(~)s =-- In 2sin-~l 

=0. (3.3) 
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we o b t a i n  f r o m  ( 3 . 3 )  

ln2leosO_eosul~(u)du=hocoW8 ~ cos(sO) g,~cn. ( 3 . 4 )  
0 = n = O  

Further, assuming that the unknown function x(u) is absolutely Integrable and continuous over 
the whole interval [0, 6], except perhaps at the end u = 6, we introduce the function 

F ( u ) =  [ ~ ( v ) - - c  o ]dv  -~ sin - - .  
0 ~ = 1  

Then, integrating the left-hand side of Eq. ( 3 . 4 )  by parts, we obtain 

6 

y sin u du 
F (u) cos u --  cos 0 = / (0), 

0 

(3.5) 

( 3 . 6 )  

w h e r e  

] (0) = c o (ho - -  8 in 21 cos 0 - -  
s=l S = 

cos (sO) ~ g,,~c,~. 

For subsequent transformations it should be noted that the functions hs(k) are analytic 
over the whole complex plane, except at the roots of the equations 

J~ ( k ) =  0, H~a)'(k) = 0 ( s =  0,1 . . . .  ). ( 3 . 7 )  

However, these roots determine the elgenvalues of the problem for ~ = O, i.e., when the 
opening of the cylinder is closed, and therefore small regions in the neighborhoods of these 
roots are excluded from consideration. 

Taking this Into account and summing over s in the expression for f(0), we obtain 

'~/~ (3 .8 )  
(0) 

/ (0) = c o [ho - -  8 in 2 [ cos 0 - -  cos 81 + fo (0) ' ~ cn, 

where t h e  functions fn(O) are continuous in [0, ~] and have continuous derivatives; as O § 0 
f~(o) = o(o in n).  

By the change of variables 

we transform Eq. (3.6) to the form 

c o s u = t ,  c o s O = t o  

COS 6 

y F  (0 et . tl = - -  I (to), 
1 

where the left-hand side is considered as an integral of the Cauchy type. 
F(t) is continuous In [i, cos ~], this integral is inverted by the formula 

cos5 
[(t) at 

F (to) = V (to - cos 8) (t - to) V ( t -  cos 8) (t --  t) t - -  t o 
1 

under the condition 

Substituting Eq. 
obtain 

(3.9) 

(3.lO) 

Since function 

(3.11) 

cos 6 

y I(t)dt = 0 .  ( 3 . 1 2 )  
- i / ( t  - cos 6) ( t  - t) 

1 

(3.8) for f(t) into (3.11) and Integragln8 the series term by term, we 

~ , = 1  "" 

( 3 . 1 3 )  

D 

where the functions fn(te) are continuous in [1, cos ~] as follows from the PlemelJ--Privalov 
theorem by taking account of the behavior of the Cauchy-type integral near the ends of the 
path of integration [7] by virtue of the continuity of functions f(t) and their derivatives. 
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Transforming to the variable O in (3.13) by using (3.9), expanding its right-hand side 
in a Fourier sine series in the interval [0, 6], and taking account of (3.5), we equate the 
corresponding coefficients on the left- and right-hand sides 

= - = - = (m 1 , 2 ,  .). 

As a result of the continuity of the functions ~n(8>, the coefficients dmn 
condition 

Further, substituting 

where the don are certain finite constants. 

(3.14) 

will satisfy the 

d ~ , <  oo ( m =  t ,  2 . . . .  ). (3.15) 
n = O  

(3.8) into (3.12), we obtain an equation closing system (3.14): 

dooco + ~ ~_~ c~, = O, (3.15) 

We write s y s t e m  (3.14), (3.16) in matrix form 

(j +-~)-~ = o. 

By virtue of (3.!5) ' the matrix A satisfies the condition 

B =  

Hence it follows [8] that the operator A is compact from Za to Za, and 

Ilill < B. 

In accord with the well-known criterion [9], the operator-valued function A(k) from l~ to 52 
is also analytic, since by v_irtue of the uniform convergence of the series determining the 
elements amn of the matrix A, the function 

~ = 0  n ~ O  

is analytic, where X and Y are arbitrary sets belonging to the space ~a. 

If we take account of ~he fact that the corresponding inhomogeneous problem has a unique 
solution for a certain set of values of k [i0], all the conditions of Fredholm's analytic 
theorem [Ii] will be satisfied. It follows from this theorem that the set of eigenvalues of 
the problem posed is discrete and can be determined approximately by the reduction method. 

4. The dependences of the eigenvalues of the problem posed on the size of the opening 
were calculated by finding the zeros of the determinant of the truncated system (2.7). In 

accord with [6] the origins of the curves kr(~ ) = k'r(~ ) -- ik"r(~) (r = i, 2, ...) were taken 
at the roots of Eqs. (3.7), which are equal to the elgenvalues of the problem for regions 
which are internal and external with respect to a cylinder with a closed slot. The accuracy 
of the calculation was checked by varying the number of equations of the truncated system. 
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Figure 2 shows the calculated dependences of the eigenvalues kr(6) corresponding to the 
root k1(0) = 0.5012 -- i0.6435 of the function H~(1)(k), the rootk2(0) = 1.8406 of the func- 
tion J2(k), and the root k3(O) = 3.8261 of the function J~(k). A more complete physical 
representation of the character of the damping of natural vibrations is shown in Fig. 3 by the 
graphs of the logarithmic decrements calculated from the relation 

2,,k~ (~} 
~,(a) = k',  ( a }  " 

It should be noted that the increase in the values of k'r(6) with increasing 6 is not at 
variance with those results obtained from the approximate theory of resonators [i] on the 
dependence of the natural vibrational frequencies of the gas on the size of the opening. In 
the present article these relations were obtained up to values ~ > ~/2. To investigate the 
asymptotic behavior of the functions kr(~) as ~ * ~ and r * -, it is c!early expedient to 
employ other methods of solving the problem. 
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